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Abstract

A method for prediction of location and size of multiple cracks based on measurement of natural
frequencies has been verified experimentally for slender cantilever beams with two and three normal edge
cracks. The analysis is based on energy method and representation of a crack by a rotational spring. For
theoretical prediction the beam is divided into a number of segments and each segment is considered to be
associated with a damage index. The damage index is an indicator of the extent of strain energy stored in
the rotational spring. The crack size is computed using a standard relation between stiffness and crack size.
Number of measured frequencies equal to twice the number of cracks is adequate for the prediction of
location and size of all the cracks. The accuracy of prediction of crack details is encouraging. The maximum
error in predicting location of cracks decreases with an increase in the number of cracks. It is less than 10%
and 20% for two and three cracks respectively. The maximum error in predicting the crack size is less than
12% and 30% respectively for the two cases. A strategy to overcome failure in the prediction for cases with
one of the cracks located near an anti-node has been suggested.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

To help in a continuous safety assessment of a machine or structure it is very necessary to
constantly assess the health of its critical components. This calls for a continuous assessment of
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changes in their static and/or dynamic behaviour. The changes have very often their origin in local
reduction of structural stiffness caused by cracks or crack-like defects. The development of a crack
does not necessarily make a component instantly useless, but it is a signal that its behaviour has to
be monitored more carefully. Such monitoring can play a significant role in assuring an
uninterrupted operation in service by the component. This has made the vibration-based
monitoring of components consisting of cracks or crack-like defects in service very important and
the study of vibration of components with crack very wide. Very good reviews on these issues have
been presented by Dimarogonas [1], Wauer [2] and Salawu [3].

Most studies concerning the forward (i.e. determination of natural frequencies from crack
details) and inverse (i.e. determination of crack details from the measurement of vibration
parameters) problems in beams deal with a single crack. The case of multiple cracks has not
received the same degree of attention. Ostachowicz and Krawczuk [4], Liang et al. [5], Hu and
Liang [6], Choy et al. [7], Ruotolo and Surace [§8], Tsai and Wang [9], Shrifin and Ruotolo [10],
Sekhar [11], Kisa and Brandon [12], Zheng and Fan [13], Khiem and Lien [14], Li [15], Sinha [16],
etc., have studied such problems.

While papers dealing with multiple cracks mostly address the forward problem, Liang et al. [5],
Hu and Liang [6], Choy et al. [7], Ruotolo and Surace [§8], and Sinha et al. [16], address the inverse
analysis. In solving the inverse problem involving slender beams, some of the investigators
consider that a crack reduces the section modulus (EI) of a small segment around itself [7,16].
Others consider that a crack causes a local discontinuity in the slope of the deflection curve or
reduces the energy content of the beam. They also consider that the overall mode shapes of the
cracked and the corresponding uncracked beams differ a little except near the crack location,
where there is a jump in slope. In a physical representation of the beam these are embedded by
invoking at the crack location a rotational spring, which adds the additional rotational flexibility
or acts as an energy sink. Experimental results have been presented by a few researchers [8,16—17],
that too, involving at the most two cracks. Ruotolo and Surace [8] give the results for cracks with
two fixed locations but varying sizes in cantilever beams and the solution is obtained using the
genetic algorithm. Sinha et al. [16] present similar results for free—free beams and the method of
detection is based on sensitivity matrix update technique. Cawley and Adams [17] consider two-
dimensional plates and prediction is based on the error sensitivity analysis. All the above
approaches use finite element method as a tool for analysis and they are iterative and require an
initial guess. As a result, the error in the solution is markedly influenced by the initial guess.
Experimental results involving more than two cracks are not available.

Liang et al. [5] and Patil [18] have approached the problem of multiple cracks by representing a
crack by a rotational spring too and breaking the beam into a number of segments, each of which
can have only one crack. Though the size of crack in a segment decides the extent of the local
effects, they have assumed the effect to be spread uniformly over the whole segment. They present
a linear relationship between the changes in natural frequency with the damage parameters
through energy considerations. Liang et al. [5] have obtained the relationship through symbolic
computation, which is basically employed to obtain the mode shapes of the corresponding
uncracked beam. Patil [18] have obtained the exact relationship directly without resorting to the
symbolic computation. This is facilitated by the transfer matrix method. Measurement of a
change in a number of natural frequencies permits determination of the damage parameters and
detection of crack details. Unlike Liang et al. [5], Patil [18] show that the crack details can be
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obtained from the damage parameters directly. This method does not require any initial guess for
prediction of crack details.

In this paper experimental studies, which help to verify the accuracy and effectiveness of the
method [18], are presented. Cantilever beams with two and three cracks are examined. The beams
are considered slender so as to be able to neglect the shear deformation and rotational inertia.
Further, the overall mode shapes of the cracked and the corresponding uncracked beams are
considered to differ a little except near the crack location, where there is a local slope
discontinuity.

2. Theoretical formulation

For completeness of presentation the formulation is briefly given here. The crack is represented
by a rotational spring (Fig. 1). The rotational spring stiffness (K) for a through-the-thickness
crack is explicitly given by

_ EBI’
72nf (n)’

where 1 =a/h, a is crack size, B is beam width or thickness, / is its depth, E is modulus of elasticity
and

(1

f(7) = 0.6384(17)* — 1.035(n)° + 3.7201(n)* — 5.1773(n)°
+7.553(7)® — 7.3324(n)" + 2.4909(n))®. )

This relationship is very accurate up to #<0.6 [19].

The strain energy (U) of a beam containing a crack reduces because the beam can deform easily
to the same extent as the uncracked beam. This reduction is equal to the extent of energy stored in
the fictitious rotational spring, which represents the crack. That is,

M2
U=U,— —, 3
"= g 3)
where U, is the energy stored in the corresponding uncracked beam in mode n, M is the bending
moment at the location of the crack in the uncracked beam and K is the rotational spring stiffness.
This idea can be extended to multiple cracks. If there are m cracks the energy levels of the cracked

Y
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Fig. 1. Representation of crack by rotational spring.
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and uncracked beams are related by

U=Un—;2Kl_, (4)

where M; and K; are the bending moment at the crack location x=/; and stiffness associated with
crack i, respectively.

The natural frequencies (w,. and w,) of a beam without and with a crack are given respec-
tively by

U,
wrzlc:7’ (5)
U M? M3 M?
2 _ - _ - 72 _  ._"m
7 {U” 2K, 2K, 21(,,1} / v, ©)

where U, = 1/2 fOL EI(d*Z/dx?)?*dx, V, =1/2 fOL pAZ*dx, A and I are the cross-sectional area
and second moment of inertia, respectively, p is the density and L is the total length of the beam.
Z represents mode shape of the beam without a crack. V' is ratio of kinetic energy of the beam
with a crack and a)g Generally, for a beam with an edge normal crack, there is no loss of material
and, hence, change in the mass. With the assumption that there is a negligible difference between

the transverse mode shapes of a virgin beam and the corresponding beam with a crack, V=7V,
[20]. Therefore,

5 5 n U= (M3)2K |+ -+ M?)2K;+ - -+ M2, /2K ;)

o Un 7
Ope = e =7 7z ()
wﬁc—a)gzMf/ZKl+---+Mf/2K,-+---+M,2n/2Km ®)

(D%c U” ,
A(Un(wnc + wc) _ (Sllpnl + o+ SVt + Smlpnm) 9)

2
OF 8 U,

where ¥,,; = fl,- EI/Z(dzZ/abcz)2 dx and S, = (Mf/2K,-)/‘Pm-. S; is called damage index; it is an
indicator of extent of strain energy stored in the rotational spring. If the beam is divided
arbitrarily into r (=m) segments, assuming S;=0 for no crack, S;=1 for complete separation, and
Wpe + 0.2 2wy, above equation can be rewritten as

200, (S1¥u 4+ S+ + S, W)

10
wnC Un ( )
SV,
Wnc 2 U,

The coefficients (¥,;/2U,) of damage parameter S; depends only on the mode shape Z of the
uncracked beam. Thus for a beam divided into r segments and with ¢ number of known
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frequencies, Eq. (11) gives rise to a set of simultaneous equations

Aw,
{ “’} = [H],r (S} (12)
gx1

a)l’lC

where a typical element of [H] matrix, h; = ¥;;/2U;, i=1,2,...,q, and j=1,2,...,r; i refers to the
mode and j refers to the segment number. For example, for a cantilever beam, the ith mode shape
is given by

Z(x) = cos (px) — cosh (px) — a[sin (px) — sinh (px)], (13)
where ¢ = (cos (pL) + cosh (pL))/(sin (pL) + sinh(pL)) and p* = pAw? /EI. Therefore,
i—f = p{—sin (px) — sinh (px) — a[cos (px) — cosh (px)]}, (14)
&z . .
2 =P {— cos(px) — cosh (px) — a[— sin (px) — sinh (px)]}. (15)
Explicitly,
_ G(xj) — G(x;-1)
hi = ]2G(L) — (16)
where
G(x) = E;p3 {(6® + 1)[sinh (2px) + 4 cosh (px) sin (px)]
— (6% = 1)[sin (2px) + 4 cos (px) sinh (px)]
+ 4px — 4a[sin (px) + sinh (px)]*}. (17)

For solving the inverse problem Eq. (12) is the basis. The numerical values of the damage
parameters S; obtained after solving Eq. (12) furnish information about the extent of damage in
the segments. If the number of measured frequencies ¢ is less than r, unknown ¢ damage
parameters can be obtained through pseudo-inverse technique [3].

In order to locate the crack in segment i with S;>0, the value of M?/2Kl- 1s determined from

e EI (d2Z\°
P_s ' 1
2K, S/,,_ 2 <dx2> dx (1%

Assuming A; = Mlz/2 = 1/2[El(d22/dx2)]i:ﬂL and C;=1/K;, for the segment, 4,C;=constant.
Taking a position f for the crack in the span, 4; can be calculated, and then using 4;C;= constant,
C; can be determined. Thus a variation of K; vs. crack position (ff) can be obtained for a particular
mode. This can be repeated for more than two modes. The intersection of the curves will give
directly the crack location in the segment and the corresponding spring stiffness. Using relation
(1), the crack size can then be evaluated.
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3. Experimental studies

Specimens were made out of an aluminium alloy. The material properties are: modulus of
elasticity E=70.06 GPa and mass density p =2645.19 kg/m>. The beam dimensions are included in
the tables later.

Different crack positions and sizes (a/h in the range 0.1-0.65) have been examined. The cracks
are made by wire cut machining. The width of wire cut is 0.15mm. For clamping a specimen a
readymade fixture [21] has been used. This consists of a heavy base plate with a top cover plate.
The cover plate is secured in position by six bolts.

The experimental setup is shown in Fig. 2. An accelerometer (Bruel and Kjaer, Type 4344) with
a mass of 2 gm is fixed on the top edge of the beam using wax at a distance of about 15 mm from
the fixed end. The output of the accelerometer is supplied to a charge amplifier (Bruel and Kjaer,
Type 5974). The charge amplifier output is analyzed by an FFT analyzer (Tektronix TDS 220).
The analyzer has a digital readout for the peaks.

During testing a specimen is lightly tapped by a finger or sound hammer in the transverse
direction. The beam response is analyzed by the FFT analyzer. From the responses, the first few
natural frequencies are noted. More experimental details are available in Ref. [21].

3.1. Results

Table 1 presents a typical set of the first five measured natural frequencies for cantilever beams
with two cracks. For the prediction of crack details using these data as input a program has been
written in MATLAB based on the theory given earlier. In each case the beam is divided into 10
segments, i.e. =10, unless otherwise specified. From the five frequencies for a beam (Table 1)
with and without cracks, a set of simultaneous equations involving the damage parameters are
obtained using Eq. (12). The uncracked beam frequencies are required for zero setting [21]. Since
the number of measured frequencies (five) is less than number of segments (10), the pseudo-inverse
technique of the MATLAB package is employed to solve for the damage parameters iteratively.

il lw Accelerometer

- T Y \
f1

Clamp

Beam

FFT Analyser

Amplifier M

Fig. 2. Experimental set-up.
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Table 1
Measured natural frequencies for cantilever beam with two cracks
Case no. Crack location and size Natural frequencies (Hz)
Bi a/h B2 as/h @ (2] 3 Wy s

Uncracked beam 237.50 1460.0 3880.0 7210.0 9740.0
1 0.2 0.2 0.498 0.43 220.0 1260.0 3790.0 6275.0 9320.0
2 0.25 0.455 0.50 0.25 200.0 1355.0 3475.0 6185.0 9305.0
3 0.10 0.450 0.496 0.450 185.0 1220.0 3700.0 6300.0 9120.0
4 0.25 0.46 0.50 0.15 205.0 1405.0 3490.0 6285.0 9160.0
5 0.15 0.30 0.496 0.455 210.0 1250.0 3800.0 6225.0 8725.0
6 0.25 0.434 0.50 0.35 205.0 1345.0 3570.0 6245.0 8925.0
7 0.25 0.42 0.5 0.4 207.5 1310.0 3585.0 6190.0 9065.0
8 0.25 0.15 0.5 0.45 220.0 1235.0 3720.0 6100.0 9495.0

E=70.06 GPa, p=2645.19kg/m>, h=0.0191m, B=0.0064m and L=0.24m.

The iteration continued till all the damage parameters are found to be positive. If a damage parameter
was negative after iteration, it was set equal to zero and further iteration was carried out [6].
To predict the location of crack in a segment Eq. (18), which can be re-written as follows, is

employed:
M2 EI (2’
Tx=pL _ o [ 2L (82
2K S/, 2 (dx2> dx. (19

For a particular mode, varying f (where f=x/L) in the above relation a plot of K vs. f§ is
obtained. Similar plots for two or more modes are considered. These are shown for a few cases in
Fig. 3. The intersection of these curves corresponding to the three modes gives the crack location
and the associated rotational spring stiffness. If the curves do not intersect at a single point,
the centre of gravity of the three pair of intersection points is taken as the crack location [21]. The
crack size is then obtained using Eq. (1). The accuracy of predictions (Table 2) is good. The
maximum absolute error is 9.2% in crack location and 12% in crack size.

The same cases were again examined considering only the first four frequencies. The predicted
results are compared in Table 3. The results show similar accuracy in the prediction of both crack
location and size. This therefore indicates that a minimum of 2n frequencies are required to
predict location and size of n cracks, i.e. 2n unknowns.

Cantilever beams with three cracks were also examined and the experimental results and
theoretical predictions are presented in Tables 4 and 5, respectively. In this case the first six
frequencies were measured and are used for the predictions. The maximum absolute error is
19.5% in crack location and 15.1% in crack size. In cases 5 and 8 (Table 5) one of the cracks, the
second and third respectively, is located near an anti-node. They could not be predicted employing
all the six measured frequencies. These two cases were again tried out by considering only the four
measured frequencies ws—wg. The results obtained thereby are shown in Table 5. They too show
good accuracy for the prediction of location. The error in crack size prediction however increases
to 30%.
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Fig. 3. Sample plots of K vs. f for cantilever beam with two cracks (Table 2).
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Table 2
Comparison of actual and predicted crack location and size for cantilever beams of Table 1
Case no. Actual data Predicted location and crack size
B alh p Y%error K alh Yerror
1 0.2 0.2 0.259 5.9 38.0 0.1787 —2.13
0.498 0.43 0.442 5.6 6.5 0.4064 —3.56
2 0.25 0.455 0.272 2.2 7.0 0.394 —6.1
0.5 0.25 0.410 -9.0 14.5 0.2856 3.56
3 0.1 0.45 0.157 5.7 4.0 0.494 4.4
0.496 0.45 0.560 6.4 7.8 0.376 —7.4
4 0.25 0.46 0.272 22 7.0 0.394 —6.6
0.50 0.15 0.411 —8.9 37.0 0.181 3.1
5 0.15 0.30 0.157 0.7 16.0 0.273 -2.7
0.496 0.455 0.442 —5.4 6.8 0.398 —57
6 0.25 0.434 0.272 22 9.0 0.354 -8.0
0.50 0.35 0.408 -9.2 12.0 0.311 -39
7 0.25 0.42 0.272 2.2 13.0 0.300 —-12.0
0.5 0.40 0.408 -9.2 8.3 0.366 —4.2
8 0.25 0.15 0.259 0.9 52 0.152 0.2
0.5 0.45 0.442 —5.8 5.5 0.435 -1.5

3.2. Ruotolo and Surace’s [8] experimental results on cantilever beams

Ruotolo and Surace’s [8] measured natural frequencies are shown in Table 6 for steel cantilever
beams. The beam span (L) is 0.8 m and depth (%) is 0.02m. They considered two cracks at
locations 0.254m (=0.317) and 0.545m (f=0.681) from the fixed end with sizes 20% and 30%,
respectively. For prediction of crack locations the beam is divided into 11 segments, the same
as considered in Ref. [§]. The predictions (Table 7) were made using the measured frequencies
(Table 6). The maximum absolute error in prediction of crack location is 0.3% and that in size is
6.3%. Ruotolo and Surace predicted correctly only the elements in which cracks are located in the
cases Cl and C3 (Tables 6 and 7).

4. Discussions

The present experimental results involving cantilever beams with two and three cracks and
Ruotolo and Surace’s [8] experimental data have helped to examine the accuracy of the method
[18] of crack prediction. Results on three cracks are reported for the first time. On the whole the
method accuracy is good for the prediction of crack location. The accuracy is lower for the
prediction of crack size. The maximum absolute error is 19.5% for the prediction of location and
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Comparison of actual and predicted crack location and size for cantilever beams of Table 1 considering first four

natural frequencies

Case no. Actual data Predicted location and crack size
B alh p %error alh %error
1 0.2 0.2 0.157 —43 0.169 -3.1
0.498 0.43 0.442 5.6 0.398 -3.2
2 0.25 0.455 0.156 -9.4 0.420 -3.5
0.5 0.25 0.555 =55 0.2046 4.54
3 0.1 0.45 0.157 5.7 0.494 44
0.496 0.45 0.560 6.4 0.376 —7.4
4 0.25 0.46 0.156 -9.4 0.394 —6.6
0.50 0.15 0.444 —5.6 0.089 —6.1
5 0.15 0.30 0.157 0.7 0.273 —2.7
0.496 0.455 0.442 —5.4 0.398 =5.7
6 0.25 0.434 0.158 -9.2 0.394 —4.0
0.50 0.35 0.556 5.6 0.23 —-12.0
7 0.25 0.42 0.157 -93 0.39 -3.0
0.5 0.40 0.557 5.7 0.29 —11.0
8 0.25 0.15 0.157 -93 0.14 -1.0
0.5 0.45 0.442 —5.8 0.435 -1.5
Table 4
Measured natural frequencies for cantilever beam with three cracks
Case no. Crack location and size Natural frequencies (Hz)
B ar/h B2 afh B3 asfh w1 w2 w3 g Ws We
Uncracked 125 770 2106 4020 6520 9355
1 0.353 0.398 0.55 0.25 0.75 0.25 120 712 1945 3935 6000 9200
2 0.10 0.15 0.40 0.20 0.73 0.53 120 700 1775 3705 6380 8720
3 0.10 0.30 0.39 0.32 0.65 0.50 112 655 1825 4000 5850 8255
4 0.1 0.15 0.4 0.15 0.62 0.52 120 665 1905 3990 5815 8810
5 0.28 0.52 0.5 0.2 0.75 0.2 110 740 1865 3715 6470 8555
6 0.10 0.50 0.40 0.30 0.62 0.31 98 670 1995 3780 5815 8350
7 0.10 0.40 0.45 0.40 0.73 0.42 105 660 1700 3400 6140 8450
8 0.23 0.65 0.45 0.15 0.70 0.15 95 765 1855 3875 6400 9135

E=70.06GPa, p=2645.19kg/m>, 1=0.0191m, B=0.0064m and L=0.34m.

it is 30% for the prediction of crack size. The accuracy reduces as the number of cracks increases.
Number of measured frequencies equal to twice the number of cracks is adequate for prediction of
their locations and sizes.
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Table 5
Comparison of actual and predicted crack location and size for beams of Table 4
Case no. Predicted crack location and size
b1 Y%error a;/h  %error f, Y%error  ay/h Y%error  f3; %error az/h  %error
1 0.358 0.5 0316 —-8.19 0.531 —-1.9  0.169 —-8.1 0.641 —-109 024 —1.0
2 0.046 —-54 0.132 -1.8 0.388 —-1.2  0.245 45 0.734 046 043 -99
3 0.106 0.6 02890 —I1.1 0.294 -9.72 0.174 —15.1  0.645 —-0.5 048 =20
4 0.17 7.0 0.141 -09 0.452 52 0.231 8.1  0.640 1.94 043 -94
5 0.195 —19.5 0455 —6.86 — 0.716 —-34 034 140
0.453* —4.7  0.231° 3.1 0.70% —-50 045" 250
6 0.104 04 0477 =23 0.452 52 0.241 -59 0.630 0.65 028 -29
7 0.195 9.5 0483 8.3 0.452 0.2 0.370 -3.0 0.725 —-0.59 0.44 2.12
8 0.195 —-344 0.678 -7.8 0294 —15.6  0.09 —6.0 — —
0.695* —0.5  0.45* 300
4Obtained considering frequencies w3—ws.
Table 6
Measured natural frequencies of Ruotolo and Surace [§] for cantilever beams
Case no. Crack location and size Natural frequencies (Hz)
B arfh B2 afh [ (2] 3 04
Cl Uncracked beam 24.248 152.026 424.457 823.160
0.317 0.2 0.681 0.2 24.066 150.612 416.579 820.399
C2 Uncracked beam 24.175 152.103 424.455 824.209
0.317 0.2 0.681 0.3 24.044 149.268 409.287 818.150
C3 Uncracked beam 24.145 151.873 424.328 823.749
0.317 0.3 0.681 0.2 23.892 150.260 411.265 819.811
E=2.06GPa, p=7850Kg/m>, h=B=0.02m and L=0.8m.
Table 7
Comparison of predicted crack location and size by present method with actual data Table 6
Case no. Actual data Predicted location and crack size
B alh p Yerror K alh Yerror
Cl 0.317 0.2 0.319 0.2 115 0.183 -1.7
0.681 0.2 0.682 0.1 105.5 0.190 -1.0
C2 0.317 0.2 0.32 0.3 168 0.15 =5.0
0.681 0.3 0.683 0.2 38.8 0.31 1.0
C3 0.317 0.3 0.32 0.3 68.5 0.237 —6.3
0.681 0.2 0.682 0.1 110 0.187 -13
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Cases where one of the cracks is located near an anti-node require a careful handling. A subset
of the measured frequencies has been found useful to overcome the failures in the prediction.
However, such a strategy increases the error in the prediction of crack size. It must be noted here
that failures to predict crack details even for the case of a single crack located near an anti-node of
the beam has been reported in the literature [21].

Very good accuracy of the method associated with the prediction of location can be exploited at
least for quickly locating a crack in practice for long beam-like components. Further refinements
in the prediction of location are possible by employing any standard conventional NDT method.
Thereby time and cost involved in the inspection can be reduced.
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